
Claude Code
Why it matters, and how to get started

Why it matters

Claude Code is able to semi
autonomously build software
solutions near the level of an
average junior engineer.

Claude Code

Terminal application that uses
Anthropic models to write and run
code

Is:

The closest thing to an
autonomous SWE agent.

Isn’t:

IDE code autocomplete

Human level SWE (yet)

Similar
Agents:

How to

Install:

- Open your terminal
- Install node.js 18+
- Run npm install -g @anthropic-ai/claude-code

Run:

1. Navigate to your repo – `cd <path>`
2. Write `claude code` and press enter

○ --continue: flag to load conversation history
○ --model: opus is best, sonnet is cheaper

3. Log to your account using `/login` command
4. Write your prompt and press enter

http://nodejs.org

Usage Patterns

Small Production Tasks

When:

- Small changes
- Simple bug fixes
- Ask the codebase
- Ask about documentation

How:

- Short prompt to the point
- Model or Reasoning barely matter.
- Auto-accept code is optional
- Always use version control

Small Production Tasks

Prompt example:

> Give me a short one
paragraph description of the
project, and tell me how I can
run it locally

Medium Production Tasks

When:

- Basic research
- Write documentation
- Code new features
- Write simple unit tests

How:

- Detailed prompt (~1 paragraph)
- Usually good to plan first
- Auto-accept code usually works,

but always review the results
- Sonnet may be good enough with

reasoning prompts
- Always use version control

Medium Production Tasks

Prompt example:

> Update the app visuals by changing the main
colors of the dashboard. The new colors should
be similar to the ones present in this reference
https://pluralpolicy.com for background, buttons,
words, etc. Use the same font too. Make sure to
update all the visual elements of the app in the
python and css files. The main hex colors are
#015e5c, #ff8502 and #f5fcfb. think hard .

When:

- Complete applications
- Complex new features
- Large technical challenges
- Architecture

recommendations

Large Production Tasks

How:

- Write a large and complete prompt (+1
page)

- Include references, visual guides, and other
additional resources.

- Always plan first. Review the plan multiple
times with your manual edits.

- Write the plan for future reference. Split into
todo list elements

- Follow the implementation closely, disable
auto-accept code

- Always use Opus 4 Model
- Always use the strongest reasoning
- Always use version control

When:

- Demos
- Independent experiments
- One use solutions

Vibecoding How:
- Write a large and complete prompt (+1 page)
- Include important details like language, deployment

strategy, etc.
- Include references, visual guides, and other

additional resources.
- Use Claude to write a Plan, and ask to modify as

needed.
- If the project is too complex, ask claude to split the

development in different stages
- Let Claude loose and wait until results are done
- Test the results, usually they have errors or

inconsistencies
- Copy error logs and screenshot visuals into the

prompt, ask for a plan to fix the errors.
- Approve the plan and let Claude loose again.
- Always use version control
- Limit the use of tools outside the project

Notes:

- This is a bad idea in my experience
if you need to maintain the software

- Results are usually not production
ready

- Small changes to vibe coded
software may be more complex
than expected

Prompt structure example:

● Role + task instruction
● Business context (goal, outcome, timeline)
● Software use cases w/ inputs & outputs
● Web pages spec (pages + behaviors)
● Mocked data requirement (external files)
● Simulated behavior
● Branding / visual assets
● Tests coverage areas
● Sample log format (style guide)
● Deliverables & repo structure guidance

Low Level Details

Planning

Claude includes a planning mode where
it will explore the code base but won’t
write any code until the plan is
approved. This step is especially
important for complex tasks, where it
can split the plan into milestones, and
can use the reasoning keywords. It’s
useful to ask Claude to write the plan for
future reference.

Models

Sonnet 3.7 was like an eager junior
engineer, able to make simple changes but
overcomplicating code, making
unnecessary changes and simple errors.

Sonnet 4 is pretty good, but the code is
qualitatively similar to Sonnet 3.7.

Opus 4 is different, with better planning,
smaller changes and sometimes sparks of
interesting results.

Prompting

The task complexity should define the
prompt length and level of detail. It’s
useful to include images and additional
references. The more specific your
instructions are the best. You can
reference files with “@”, though not all
file types can be used. For long prompts
writing a markdown file can be useful.

claude.md

Special file that is always included
inside Claude context. Specially useful
for instructions that Claude should
always follow like useful commands and
best practices.

Reasoning

Claude Code includes special keywords
that relay to the model how much it
should reason about the prompt. They
are "think" < "think hard" < "think
harder" < "ultrathink", each allocating
more thinking budget than the last. This
may improve performance but also
increases times and costs.

Pricing

Pay-per-use using the API is a great
way to start, but you can easily spend
thousands with medium use.

Claude Max $100 or $200 plans are a
better idea for significant use, though
you may run out of Opus from time to
time.

Advanced use cases

- MCP Connection
- Multi-branch pattern
- Github integration
- Headless mode
- Etc.

Source: https://www.anthropic.com/engineering/claude-code-best-practices

Caveat: https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

https://www.anthropic.com/engineering/claude-code-best-practices
https://metr.org/blog/2025-07-10-early-2025-ai-experienced-os-dev-study/

